Reprinted from MACHINE
LANGUAGE PROGRAMMING
FOR THE “8008” (and similar
microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

MACHINE LANGUAGE

Chapter |

THE ‘8008" CPU INSTRUCTION SET

The *B008' microprocessor has quite a
comprehensive instruction set that consists
of 48 basic instructions, which, when the
possible permutations are considered, result
in a total set of about 170 instructions.

The instruction set allows the user to direct
the computer to perform operations with
memory, with the seven basic registers in the
CPU, and with INPUT and OUTPUT ports.

It should be pointed out that the seven
basic registers in the CPU consist of one
“accumulator,” a register that can perform
mathematical and logic operations, plus an
additional six registers, which, while not
having the full capability of the accumulator,
can perform various useful operations. These
operations include the ability to hold data,
serve as an ‘“‘operator” with the accumulator,
and increment or decrement their contents.
Two of these six registers have special sig-
nificance because they may be used to serve
as a ‘“pointer” to locations in memory.

The seven CPU registers have arbitrarily
been given symbols so that we may refer to
them in an abbreviated language. The first
register is designated by the symbol ‘A’ in the
following discussion and will be referred to
as the “accumulator™ register. The next four
registers will be referred to as the ‘B,’ ‘C," ‘D’
and ‘E’ registers. The remaining two special
memory pointing registers shall be designated
the ‘H’ (for the HIGH portion of a memory
address) and the ‘L’ (for the LOW portion of
a memory address) registers.

The CPU also has several “flip-flops™ which
shall be referred to as “FLAGS.” The flip-
flops are set as the result of certain operations
and are important because they can be ‘“‘test-
ed” by many of the instructions with the in-
struction’s meaning changing as a conse-
quence of the particular status of a FLAG at
the time the instruction is executed. There are
four basic flags which will be referred to in
this manual. They are defined as follows:

The ‘C’ flag refers to the carry bit status. The carry bit is a one unit register which
changes state when the accumulator overflows or underflows. This bit can also be
set to a known condition by certain types of instructions. This is important to
remember when developing a program because quite often a program will have a
long string of instructions which do not utilize the carry bit or care about its status,
but which will be causing the carry bit to change its state from time-to-time. Thus,
when one prepares to do a series of operations that will rely on the carry bit, one
often desires to set the carry bit to a known state.

The *Z’ for zero flag refers to a one unit register that when desired will indicate
whether the value of the accumulator is exactly equal to zero. In addition, immed-
iately after an increment of decrement of the B, C, D, E, H or L registers, this flag
will also indicate whether the increment or decrement caused that particular register
to go to zero.

The ‘S’ for sign flag refers to a one unit register that indicates whether the value
in the accumulator is a positive or negative value (based on two’s complement
nomenclature). Essentially, this flag monitors the most significant bit in the accumu-
lator and is *“*set” when it is a one,

The ‘P’ flag refers to the last flag in the group which is for indicating when the
accumulator contains a value which has even parity, Parity is useful for a number of
reasons and is usually used in conjunction with testing for error conditions on
words of data especially when transferring data to and from external devices. Even
parity occurs when the number of bits that are a logic one in the accumulator is an
even value. Zero is considered an even value for this purpose. Since there are eight
bits in the accumulator, even parity will occur when zero, two, four or six bits are in
the logic one condition regardless of what order they may appear in within the
register.

30

It is important to note that the Z, 5, and
P flags (as well as the previously mentioned
C flag) can all be set to known states by
certain instructions. It is also important to
note that some instructions do not result
in the flags being set so that if the program-
mer desires to have the program make
decisions based on the status of flags, the
programmer should ensure that the proper
instruction, or sequence of instructions
is utilized. It is particularly important to
note that/load register instructions do not
by themsélves set the flags. Since it is often
desirable to obtain a data word (that is,
load it into the accumulator) and test its
status for such parameters as whether or
not the value is zero, or a negative number,
and so forth, the programmer must remember
to follow a load instruction by a logical
instruction (such as the NDA - “and the
accumulator™) in order to set the flags before
using an instruction that is conditional in
regards to a flag’s status.

The description of the various types of
instructions available using an ‘8008’ CPU
which follows will provide both the machine
language code for the instruction given as
three octal digits, and also a mnemonic name
suitable for writing programs in “symbaolic™
type language which is usually easier than
trying to remember octal codes! It may be
noted that the symbolic language used is the
same as that originally suggested by Intel
Corporation which developed the ‘8008
CPU-on-a-chip. Hence users who may already
be familiar with the suggested mnemonics
will not have any relearning problems and
those learning the mnemonics for the first
time will have plenty of good company.
If the programmer is not already aware of
it, the use of mnemonics facilitates working
with an “assembler’” program when it is
desired to develop relatively large and
complex programs. Thus the programmer is
urged to concentrate on learning the
mnemonics for the instructions and not
waste time memorizing the octal codes. After
a program has been written using the
mnemonic codes, the programmer can always
use a lookup table to convert to the machine
code if an assembler program is not avail-
able. It’s a lot easier technigue (and less
subject to error) than trying to memorize







