Chapter 3

MACHINE LANGUAGE

PROGRAMMING FOR THE *“8008”
and similar microcomputers

FUNDAMENTAL PROGRAMMING SKILLS

Before one can effectively develop machine
language programs for a computer, one must
be thoroughly familiar with the instruction
set for the machine, It is assumed for the re-
mainder of this manual that the reader has
studied the detailed information for the in-
struction set of the 8008 CPU which was
provided in the first chapter. The programmer
should become intimately familiar with the
mnemonics (pronounced kneemonics) for
each type of instruction. Mnemonics are
easily remembered symbolic representations
of machine language instructions. They are far
easier to work with than the actual numeric
codes used by the computer when the pro-
grammer is developing a program. While the
programmer will develop programs and think
in terms of the mnemonics, the programmer
must eventually convert the mnemenics to
the machine codes used by the computer.
This, however, is almost purely a look-up
procedure. In fact, as will be seen shortly,
this task can actually be performed by the
computer through the use of an ASSEMBLER
program.

Machine language programmers should also
be familiar with manipulating numbers in
binary and octal form. It is assumed that

readers are familiar with representing numbers
as binary values. However, there may be a few
readers who are not used to the convention of
representing binary numbers by their octal
equivalents. The technique is quite simple.
It consists merely of grouping binary digits
into groups of three and representing their
value as an octal number. The octal num-
bering system only uses the digits 0 through
7. This is exactly the range that a group of
three binary digits can represent. The octal
numbering system makes it a lot easier to
manipulate binary numbers. For instance,
most people find it considerably more con-
venient to remember a three digit octal num-
ber such as 104 than the binary equivalent
01000100. An octal number is easily ex-
panded to a binary number by simply placing
the octal value in binary form using three
binary digits.

The information in an eight bit binary re-
gister can be readily converted to an octal
number by grouping the bits into groups of
three starting with the least significant bits.
The two most significant bits in the register
which form the last group will only be able to
represent the octal numbers 0 to 3. The dia-
gram below illustrates the convention.

EIGHT CELL REGISTER

e s o ok o o oo s o oot otk s ok ok o ok e e ook o ook ok sk ok ok ok s ok ok ok R ok ok kR sk ok ok ok Rk ok

* L i *
T U e
* * * *

0

* ¥ * * *
L L Eg g
* ¥ * * *

Lo ok ok sk sk ok ook sk sk o kol sk ok ok ok ok ok ook ok ok R koo ok ok ok kR Rk R kR R ok ok ok

L

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

84

BYTE Reprint

Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was
assigned to the left of the most significant bit
so that the octal convention for the two most
significant bits could be maintained.

A table illustrating the relationship
between the binary and octal systems is
provided for reference below.

REPRESENTATIVE
OCTAL NO.

BINARY
PATTERN

000
001
010
011
100
101
110
111

b == B U i

A person who desires to develop machine
language programs for computers should
become familiar with standard conventions
used when dealing with closed registers
(groups of binary cells of fixed length such as
a memory word or CPU register). One very
simple point to remember is that when a
group of cells in a register is in the all ones
condition:

11 111111

and a count of 1 is added to the register, the
register goes to the value:

00000000

Or, if a count of: 10 (binary) was added to a
register that contained all ones, the new value
in the register would be as shown:

1l K8 % B i L |
+00000010

00000001

Similarly, going the opposite way, if one sub-
tracts a number such as 100 (binary) from a






