bv

Hal Chamberlin

The Computer Hobbyist
PO Box 295

Cary- NG 27511

52

Add a Stack
to Your 8008

Besides higher speed, the
most significant improvement
offered by the 8080 is the
addition of a general purpose
stack capability. Using the
stack, the programmer may
save registers wused in
subroutines and interrupt
service routines and then later
restore them. Arguments to
subroutines may also be
pushed onto the stack. In the
8080 the stack is kept in
main memory and addressed
by means of a stack pointer
register. One inconvenience
of the 8080 stack is that data
may be pushed and popped
only in byte pairs creating
wasted space if only a single
register needs to be saved.
Also, the stack pointer MUST
be set up at the beginning of
a program before any
subroutines are called and
kept valid at all times or very
strange things may happen.

Much of the programming
convenience of the 8080
stack may be had on an 8008
system with the addition of
about six 1Cs and the use of
one input and one output
address. The basic stack is 16
elements deep which s
generally adequate for
register saving applications.
Addition of more chips and
substitution of 256 X 4
RAMs for the 16 X 4 RAMs
gives a 256 element capacity,
ample for almost any use. In
either case the added
hardware provides both a
stack pointer and a dedicated

memory. The stack pointer
does not need to be
initialized and thus the stack
is always ready for use, or it
can be completely ignored by
programs that don’t need it
without problems.
Programming the data
stack is quite simple. The
output address associated
with the stack is given the
symbolic name STPSH for
STack PuSH and the input

Fig. 1. A subroutine to exchange
DE and HL register pairs using
one stack location and no addi-
tional registers.

XCDEHL OUT STPSH
LAH
LHD
LDA
LAL
LLE
LEA
INP STPOP
RET

address is given the name
STPOP for STack POP. When
an OUT STPSH is executed
by the program, all of the
existing data (or garbage) in
the stack is conceptually
pushed down one location
and the byte in register A is
written into the top location
which was vacated. When an
INP STPOP is executed, the

contents of the top location
are read into register A and
then all of the lower data in
the stack moves up one
location and the top location
is lost.

An obvious application of
the stack is in writing
subroutines that do their job
without destroying any
registers. A simple example is
the exchange HL and DE
subroutine in Fig. 1. First

SAVE A ON THE STACK
EXCHANGE H AND D
USING A

EXCHANGE L AND E

RESTORE A FROM STACK
AND RETURN

register A is pushed onto the
stack. Then registers H and D
and L and E are exchanged
using A. Finally the original
state of register A is restored
by popping it off the stack
and the subroutine returns.
Because of the push-down
nature of the stack, one
subroutine that uses the stack
may call another subroutine

Reprinted by permission from The Computer Hobbyist,

May 1975.

that uses it and so on without
loss of data as long as the
stack’s capacity is not
gxcecded. The only
requirement is that all of the
data saved on the stack by a
subroutine be popped back
off before it returns.

Fig. 2 shows a completely
general interrupt service
routine that uses the data
stack to save all registers and
the state of the conditions (C,
Z, S, P). When entered,
register A is first pushed onto
the stack. Then the remaining
six registers are saved one at a
time by first loading them
into A and then pushing A
onto the stack. None of the
instructions necessary to do
this affect the condition flags.
Finally a chain of conditional
jumps is executed to create a
“magic number” in A that
reflects the state of the
conditions. After A is pushed
onto the stack, the interrupt
may be serviced without
restrictions on register usage.

In order to return to the
interrupted program, first the
magic number is popped off
and added to itself with an
ADA instruction. The
number is such that the
proper conditions are set
when it is added to itself.
Next the six index registers
are popped off and restored
in reverse order from which
they were saved. Finally A is
restored and a RET
Cinstruction is executed. This
method of complete status
saving may be modified for
use by a debug program.
Debug can be entered by a
console interrupt and the user
may examine things. Then
program execution may be
resumed with no loss of data.
These two programming
examples should serve to
illustrate the use of the stack.

The stack is implemented
with an up-down counter and

Hal Chamberlin and his associates at The Computer
Hobbyist put out excellent small systems technology . ..
designs include a high reliability audio cassette recording
method, an inexpensive high resolution graphics display — and
this article’s stack design among others. Several of their more
general purpose designs (e.g., tape interface, CRT display) are
soon to be available in kit or assembled versions. This article
describes a custom modification of an 8008 based system
which you can add to an input/output port to achieve a stack
mechanism. The method is that old standby of minicomputer
instruction set escape mechanisms — use |/0 commands to
implement “‘new instructions.”” With a stack of sufficient size
and suitable save/restore subroutines accessed by RST instruc-
tions of the 8008, you can eliminate conflicts in register usage
between multiple levels of subroutines. The overhead penalty

This circuit brings the
8008 one step closer
to the goal of a “‘real”
computer.

is a single RST or CAL instruction in the linkage code, the
register save and restore routines, and the time required to
execute the save/restore subroutines.
D AR
Fig. 2. A general purpose register
and condition code save routine.
GSAVE OUT STPSH SAVE A ON THE STACK
LAB SAVE B
OUT STPSH
LAC SAVEC
OUT STPSH
LAD SAVE D
OUT STPSH
LAE SAVE E
OUT STPSH
LAH SAVE H
OUT STPSH
LAL SAVE L
OQUT STPSH
LAl O CLEAR A
RAR PUT CARRY IN HIGH ORDER
JTZ GSAV3 JUMP IF ZERO FLAG ISON
LBI 170B PUT INTO B THE BIT MASK TO
JTS GSAV1 TURN OFF THE ZERO FLAG AND
LBl 030B RESTORE THE SIGN FLAG
GSAV1 JTP GSAV2 OR IN A 004B IF PARITY
ORI 004B INDICATOR IS OFF
GSAV2 ORB COMBINE B AND A

GSAV3 OUT STPSH

SAVE MAGIC NUMBER ON STACK

REGISTER AND CONDITION RESTORE ROUTINE

GRSTR INP STPOP

RESTORE MAGIC NUMBER FROM STACK

ADA ADDIT TO ITSELF TO RESTORE CONDITIONS
INP STPOP RESTORE L

LLA

INP STPOP RESTORE H

LHA

INP STPOP RESTORE E

LEA

INP STPOP RESTORE D

LDA

INP STPOP RESTORE C

LCA

INP STPOP RESTORE B

LBA

INP STPOP RESTORE A

RET RETURN WITH STATUS RESTORED

53

Fig. 3. Logic Diagram of a 16 element data stack. NOTE: “X" refers to
a source of logical one, usually a 1k resistor to +5.

OUTPUT i
ADDRESS [NAND I0ONS WRITE
DECODE | NO.I ; E
STPSH PUSH DECODE __,

INPUT
ADDRESS |NAND
DECODE |NO.2
'STPOP'

POP DECODE _,

b~

CPU DATA
OUTPUT BUS

o—Mnw

An obvious application
of the stack is in writing
subroutines that do their
job without destroying
any registers.

+5 +5
100Ns 2 19K
D D
: 6
B [¢]
5 a193
I B
_—
={CLR al2
UPCLK
DNCLK
STACK COUNTER
7400
5 ¢ INPUT BUS DRIVERS
[
ELND LI
% inc o
INB) 7401 7
4 iNA ¢
3 7489 5 7401 o 6
131 s08 B ;
14,04 b
Bfap2 A ! a0 "
a0l [_m___
; e
CPU DATA
,_—-la INPUT BUS
12 WE
6
INB
7489
13 7
ADS Bp
Biape AR .
ADY N CE iﬂﬁb' 0
> 7400
STACK I 4

MEMORY

a random access read-write
memory. Rather than the
data moving when pushes and
pops are executed, the
up-down counter acts as a
pointer to the top element on
the stack and the pointer
moves. The logic is set up so
that when an OUT STPSH is
decoded, the counter first
counts up one notch and
after sufficient time for the
address to settle in the RAM,
a write pulse is generated to
write the data from A into
the RAM. The write pulse
delay can be fairly short (50
NS or so) in the 16 element
stack but must be at least 200
NS for the slower MOS RAM
used in the 256 element
version. It is possible that a

timing problem may arise in a
system using the 8008-1 if
the output data is not valid
for the sum of write pulse
delay and write pulse width
(950 NS) required by the
MOS RAM. (Timing given is
for the 2101 RAM. Matters
are improved if 2101-1,
2101-2, or 9101 RAM is
used.) There should be no
problems with the bipolar
RAM in the 16 element
version.

When an INP STPOP is
recognized, the contents of
the currently addressed
location are simply gated
onto the input bus. The
counter counts down one
notch at the end of the INP
instruction thereby

addressing the next lower
element on the stack.

Figs. 3 and 4 show the
logic diagram and timing
chart respectively for a 16
element data stack. A bus
type of 1/0 system (as
opposed to a “‘port” type) is
assumed. As shown, any
system with either separate
data input and output busses
or a bidirectional bus may be
used. Some systems may use
an output bus with TRUE
data and an input bus
requiring FALSE data. In this
case, the 7401s may be
omitted and the TTL RAM
outputs tied directly to the
inpitit: buss. The [twa
single-shots, SS-1 and SS-2,
are used to time the sequence

o

w o w w O

e —

o

Fig. 4. Stack Timing Diagram.

PUSH

\QUTPUT ADDRESS <

VALID

LT

'QUTPUT STROBE] 1

5H DECODE 1 |
'SINGLE SHOT | [| /WRITE PULSE DELAY
SINGLE SHOT 2 I'iﬁ-‘WRITE PULSE WIDTH
TACK COUNTER N B 4 N+|
: POP
CINPUT ADDRESS 0K VALID

IR ENABLE 7 o R e e)
POP DECODE 1 I

\STACK QUTPUT LAV NALID XTI
STACK COUNTER N XN

of events for a stack push.
First, NAND gate number 1
recognizes the coincidence of
the STPSH device code on
 the address bus and an output
strobe pulse or its equivalent.
The gate output triggers SS-1
which increments the stack

pointer counter when its
cycle is finished. An RC
network between the two

single-shots delays firing of
§S-2 until the counter has
settled down and the RAMs
recognize the new address.
The write enable is connected
to SS-2 which allows data on
the CPU output bus to be
written into the newly
addressed RAM location.

The occurrence of an INP
STPOP is detected by NAND
gate number 2. As long as the
gate is satisfied, data from the
" RAM is placed on the CPU
input bus. At the end of the
 INP instruction when the
- NAND gate output goes back
to a ONE, the counter
decrements to address the
next lower clement on the
- stack. A 7400 connected as

an OR-NOT enables the

memory when either a push
or a pop is being executed
and disables it otherwise.

The logic necessary for a
256 element stack is
essentially the same as for the
16 element version. The
major differences are that a
separate single-shot should be
used to time the write delay
and that a buffer is absolutely
necessary to drive the CPU
input bus. If the polarity of
the input bus is the same as
that of the output bus or it is
the same bus, 8093 or 74125
noninverting and quad
tri-state buffers are
convenient to use.
Open-collector 7401 gates
may be used instead if the
input bus is inverted. The
chip enables on the MOS
RAMS should be grounded so
that the chip is always
enabled. The connection to
the bus drivers is left as it was
for the 16 element version
however. The timings for the
write delay and write pulse
width single-shots can be set
to the minimum values
allowable for the standard

2107 RAM. If a 9101 is used,
the timing may be speeded up
considerably. An 8101 may
require somewhat slower
timing. In any case be sure to
check the data sheet for the
RAM being used.

After writing a few
programs using the stack you
will wonder how you got
along without it. The size and
speed of some routines may
be improved by a factor of
two if use of the stack
alleviates the need to
constantly reference memory.
An overall improvement of
10 to 20% can be expected
on large programs such as
assemblers. The biggest
improvement however will be
in coding time since register
usage will not have to be
carefully planned in advance.

Use the stack to pass
parameters to subroutines
when you don’t have
enough registers.

builder. Our function is

Centi-Byte works

purchasing power

computing.

manufacturing companies
modest volume consumer of special purpose comr
ponents. Centi-Byte brings you this special intro-
ductory offer of fast memory chips, chips fast enough
to run an MC6800 or 8080 at maximum speed. These
2602-1’s are new devices purchased in quantity and
fully guaranteed to manufacturer’s specifications.

by concentrating your
into quantity buys
components. Let us know what you need in the way
of specialized components and subsystems for future
offerings. With your purchasing power concentrated
through us, together we will lower the cost of home

i

1K 475 ns
STATIC RAM SIGNETICS
$4.25 for one 2602-1
$4.00 each for
eight
$3.75
each for 32

all orders shipped
postpaid and
insured. Mass
residents add 3%
sales tax

WHY PAY FOR BEING SMALL?

Centi-Byte is a new source of memory components
and other necessary items for the computer hardware

to be a voice to the

representing you,

the

of new

Certi-Br

PO BOX 312
BELMONT, MASS. 02178

