Chapter 3

MACHINE LANGUAGE

PROGRAMMING FOR THE *“8008”
and similar microcomputers

FUNDAMENTAL PROGRAMMING SKILLS

Before one can effectively develop machine
language programs for a computer, one must
be thoroughly familiar with the instruction
set for the machine, It is assumed for the re-
mainder of this manual that the reader has
studied the detailed information for the in-
struction set of the 8008 CPU which was
provided in the first chapter. The programmer
should become intimately familiar with the
mnemonics (pronounced kneemonics) for
each type of instruction. Mnemonics are
easily remembered symbolic representations
of machine language instructions. They are far
easier to work with than the actual numeric
codes used by the computer when the pro-
grammer is developing a program. While the
programmer will develop programs and think
in terms of the mnemonics, the programmer
must eventually convert the mnemenics to
the machine codes used by the computer.
This, however, is almost purely a look-up
procedure. In fact, as will be seen shortly,
this task can actually be performed by the
computer through the use of an ASSEMBLER
program.

Machine language programmers should also
be familiar with manipulating numbers in
binary and octal form. It is assumed that

readers are familiar with representing numbers
as binary values. However, there may be a few
readers who are not used to the convention of
representing binary numbers by their octal
equivalents. The technique is quite simple.
It consists merely of grouping binary digits
into groups of three and representing their
value as an octal number. The octal num-
bering system only uses the digits 0 through
7. This is exactly the range that a group of
three binary digits can represent. The octal
numbering system makes it a lot easier to
manipulate binary numbers. For instance,
most people find it considerably more con-
venient to remember a three digit octal num-
ber such as 104 than the binary equivalent
01000100. An octal number is easily ex-
panded to a binary number by simply placing
the octal value in binary form using three
binary digits.

The information in an eight bit binary re-
gister can be readily converted to an octal
number by grouping the bits into groups of
three starting with the least significant bits.
The two most significant bits in the register
which form the last group will only be able to
represent the octal numbers 0 to 3. The dia-
gram below illustrates the convention.

EIGHT CELL REGISTER

e s o ok o o oo s o oot otk s ok ok o ok e e ook o ook ok sk ok ok ok s ok ok ok R ok ok kR sk ok ok ok Rk ok

* L i *
T U e
* * * *

0

* ¥ * * *
L L Eg g
* ¥ * * *

Lo ok ok sk sk ok ook sk sk o kol sk ok ok ok ok ok ook ok ok R koo ok ok ok kR Rk R kR R ok ok ok

L

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

84

BYTE Reprint

Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was
assigned to the left of the most significant bit
so that the octal convention for the two most
significant bits could be maintained.

A table illustrating the relationship
between the binary and octal systems is
provided for reference below.

REPRESENTATIVE
OCTAL NO.

BINARY
PATTERN

000
001
010
011
100
101
110
111

b == B U i

A person who desires to develop machine
language programs for computers should
become familiar with standard conventions
used when dealing with closed registers
(groups of binary cells of fixed length such as
a memory word or CPU register). One very
simple point to remember is that when a
group of cells in a register is in the all ones
condition:

11 111111

and a count of 1 is added to the register, the
register goes to the value:

00000000

Or, if a count of: 10 (binary) was added to a
register that contained all ones, the new value
in the register would be as shown:

1l K8 % B i L |
+00000010

00000001

Similarly, going the opposite way, if one sub-
tracts a number such as 100 (binary) from a

e

Reprinted from MACHINE LANGUAGE
PROGRAMMING FOR THE ‘‘8008" (and
similar microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

register that contains some lesser value, such
as 010 (binary), the register would contain
the result shown below:

8 R A [L L)

It may be noted that if one uses all the bits
in a fixed length register, one may represent
mathematical values with an absolute magni-
tude from zero to the quantity two to the
Nth power, minus one (0 to (2**N - 1))
where N is the number of bits in the register.
If all the bits in a register are used to
represent the magnitude of a number, and it is
also desired to represent the magnitude as
being either positive or negative in sign, then
some additional means must be available to
record the sign of the magnitude. Generally,
this would require using another register or
memory location solely for the purpose of
keeping track of the sign of a number.

In many applications it is desirable to es-
tablish a convention that will allow one to
manipulate positive and negative numbers
without having to use an additional register
to maintain the sign of a number. One way
this may be done is to simply assign the most
significant bit in a register to be a sign in-
dicator. The remaining bits represent the
magnitude of the number regardless of
whether it is positive or negative. When this is
done, the magnitude range for an N cell re-
gister becomes 0 to (2%%(N-1))-1 rather than
0 to (2**N) - 1. The convention normally
used is that if the most significant bit in the
register is a one then the number represented
by the remaining bits is negative in sign. If
the MSB is zero, then the remaining bits
specify the magnitude of a positive number.
This convention allows computer
programmers to manipulate mathematical
quantities in a fashion that makes it easy for
the computer to keep track of the sign of a
number. Some examples of binary numbers in
an eight bit register are shown next.

BINARY
REPRESENTATION OCTAL DECIMAL

00001000 010 i B
10001000 210 - 8
01 111-11% | +127
165 (8 6 1 I TR 3717 - 127
00000001 001 St
10000001 201 ik

While the signed bit convention allows the
sign of a number to be stored in the same re-

gister (or word) as the magnitude, simply
using the signed bit convention alone can still
be a somewhat clumsy method to use in a
computer. This is because of the method in
which a computer mathematically adds the
contents of two binary registers in the accum-
ulator. Suppose, for example, that a computer
was to add together positive and negative
numbers that were stored in registers in the
signed bit format.

00001 000 (+8decimal)
PLUS 10001 000 (- 8decimal)

EQUAL 10 010 000 (Thisisnot0!)

The result of the operation illustrated
would not be what the programmer intended!
In order for the operation to be performed
correctly, it is necessary to establish a method
for processing the negative number called the
two’s complement convention. In the two’s
complement convention, a negative number is
represented by complementing what the value
for a positive number would be (comple-
menting is the process of replacing bits
that are ‘0’ with a ‘1,” and those that are ‘1’
with a 0) and then adding the value one (1) to
the complemented value. As an example, the
number minus eight (-8) decimal would be
derived from the number plus eight (+8) by
the following operations.

00001000 (Original + 8)
11110111 (Complemented)
00000001 (now add +1)
11111000 (2’s complement

form of - 8)

Some examples of numbers expressed in
two’s complement notation with the signed
bit convention are shown below.

BINARY
REPRESENTATION OCTAL DECIMAL
00001000 010 + 8
11111000 370 R
i s G L8 0 A | 1:7.9 +127
10000001 201 - 127
00000001 001 |
11 114501 ¢ 30T s
00000000 000 + 0
10000000 200 =128

Note that when using the two’s comple-
ment method, one may still use the conven-

85

tion of having the MSB in the register estab-
lish the sign. If the MSB = 1, as in the above
illustration, the number is assumed to be
negative. Since the number is in the two's
complement form, the computer can readily
add a positive and a negative number and
come up with a result that is readily inter-
preted. Look!

00001 000 (+8 decimal)
ADD 11111 06O (-8decas2’s comp)

00 000 000 (Correct answer = 0)

Another established convention in handling
numbers with a computer is to assume that ‘0’
is a positive value. Because of this convention,
the magnitude of the largest negative number
that can be represented in a fixed length re-
gister is one more than that possible for a
positive number.

The various means of storing and mani-
pulating the signs of numbers as just dis-
cussed have advantages and drawbacks, and
the method used depends on the specific
application. However, for most user’s, the
two’s complement signed bit convention will
be the most convenient, most often used,
method. The prospective machine language
programmer should make sure that the con-
vention is well understood.

Another area that the machine language
programmer must have a thorough knowledge
of is the conversion.of numbers between the
decimal numbering system that most people
work with on a daily basis, and the binary and
octal numbering system utilized by computer
technologists. Programmers working with
microcomputers will generally find the octal
numbering system most convenient. Because
the conversion from octal to binary is simply
a matter of grouping binary bits into groups
of three as discussed at the start of this
chapter, it is easier to remember octal codes
than long strings of binary digits. However,
most people are used to thinking in decimal
terms, which the computer does not use at
the machine language level. Thus, it is nec-
essary for programmers to be able to convert
back and forth between the wvarious num-
bering systems as programs are developed.

The conversion process that is generally the
most troublesome for people to learn is from
decimal to binary, or decimal to octal (and
vice-versa)! It is usually a bit easier for people
to learn to convert from decimal to octal, and
then use the simple octal to binary expansion
technique, than to convert directly from
decimal to binary. The easier method will be
presented here. It is assumed that the reader
is already familiar with going from octal to
binary (and vice-versa). Only the conversions
between decimal and octal (and the reverse)
will be presented at this point.

A decimal number may be converted to its
octal equivalent by the following technique:

Divide the decimal number by 8. Record
the remainder (note that is the RE-
MAINDER!!') as the least significant digit
of the octal number being derived. Take the
quotient just obtained and use it as the new
dividend. Divide the new diidend by 8.
The remainder from this operation becomes

the next significant digit of the octal number.
The quotient is again used as the new divi-
dend. The process is continued until the quo-
tient becomes ‘0." The number obtained from
placing all the remainders (from each division)
in increasing significant order (first remainder

ORIGINAL NUMBER 1234
LAST QUOTIENT BECOMES
NEW DIVIDEND 154
LAST QUOTIENT BECOMES
NEW DIVIDEND 19
LAST QUOTIENT BECOMES
NEW DIVIDEND 2

Thus the octal equivalent of 1234 decimal is:

as the least significant digit, last remainder as
the most significant digit) is the octal number
equivalent of the original decimal. The
process is illustrated below for clarity.

The octal equivalent of 1234 decimal is:

Lo 8 = 154 2
R = 19 2
fHS = 2 3

e = S

2322

The above method is quite easy and
straightforward. Since a majority of the time
the user will be interested in conversions of
decimal numbers less than 255 (the maximum
decimal number that can be expressed in an

ORIGINAL NUMBER 255

LAST QUOTIENT BECOMES

NEW DIVIDEND 31

LAST QUOTIENT BECOMES

NEW DIVIDEND 3

Thus the octal equivalent of 255 is:

eight bit register) only a few divisions are
necessary:

The octal equivalent of 255 decimal is:

QUOTIENT REMAINDER

o B 31 7

IR 3 T

f B e 3
377

For numbers less than 63 decimal (and
such numbers are used frequently to set
counters in loop routines) the above method
reduces to one division with the remainder
being the LSD and the quotient the MSD.

ORIGINAL NUMBER 63
LAST QUOTIENT BECOMES

NEW DIVIDEND 7

Thus the octal equivalent of 63 is:

This is a feat most programmers have little
difficulty doing in their head!

The octal equivalent of 63 decimal is:

N Bty =T 7

Going from octal to decimal is quite easy
too. The process consists of simply multi-
plying each octal digit by the number 8 raised
to its positional (weighted) power, and then
adding up the total of each product for all

the octal digits:

2322 Octal =
..... 2 X (B 0) - = (2X1) =
.2 X (Be]). = (2X8) =
.3 A B = (3 X 64) i
2 X (8%3) = (2X512) =

Thus the decimal equivalend of 2322 Octal is :

Besides the basic mathematical skills in-
volved with using octal and binary numbers,
there are some practical bookkeeping consid-
erations that machine language programmers
must learn to deal with as they develop pro-

2
MEMORY TOTAL
16 WORDS WORDS
THIS THIS
192 INSTR. ROUTINE

1024 2 2
———————— - 2 4
1234 2 6
1 7
1 8
1 9
1 10

grams. These bookkeeping matters have to do
with memory usage and allocation.

As the reader who has read chapter one in
this manual knows, each type of instruction
uséd in the BO08 CPU requires one, two, or
three words of memory. As a general rule,
simple register to register or register to
memory commands require but one memory
word. Immediate type commands require two
memory locations (the instruction code
followed immediately by the data or oper-
and). Jump or call instructions require three
words of memory storage. One word for the
instruction code and two more words for the
address of the location specified by the in-
struction. The fact that different types of in-
structions require different amounts of
memory is important to the programmer.

As programmers write a program it is often
necessary for them to keep tabs on how many
words of memory the actual operating por-
tion of the program will require (in addition
to controlling the areas in memory that will
be used for data storage). One reason for
maintaining a count of the number of
memory words a program requires is simply
to ensure that the program will fit into the
available memory space.

Often a program that is a little too long to
be stored in an available amount of memory
when first developed can be rewritten, after
some thought, to fit in the available space.
Generally, the trade-off between writing com-
pact programs versus not-so-compact routines
is simply the programmer’s development time.
Hastily constructed programs tend to require
more memory storage area because the pro-
grammer does not take the time to consider
memory conserving instruction combinations.

However, even if one is not concerned
about conserving the amount of memory used
by a particular program, one still often needs
to know how much space a group of in-
structions will consume in memory. This is
0 that one can tell where another program
might be placed without interfering with a
previous program.

For these reasons, programmers often find
it advantageous to develop the habit of
writing down the number of memory words
utilized by each instruction as they write the
mnemonic sequences for a routine. Addition-
ally, it is often desirable to maintain a column
showing the total number of words required
for storage of a routine. An example of a
work sheet with this practice being followed
is illustrated here:

MNEMONICS COMMENTS

LAI 000 Place 000 in accumulator

LHI 001 Set Register H to 1

LLI 150 And Regis L to 150

ADM Add the contents of memory
INL Locations 150 & 151 on page 1
ADM Adding second number to first
RET End of subroutine

In the example the total number of words
used in column was kept using decimal num-
bers. Many programmers prefer to maintain
this column using octal numbers because of
the direct correlation between the total num-
ber of words used, and the actual memory
addresses used by the 8008,

The example just presented can be used to
introduce another consideration during pro-
gram development. That is memory alloca-
tion. One must distinguish between program
dorage areas in memory, and areas used to

hold data that is operated on by the program.
Note that the sample subroutine was designed
to have the computer add the contents of
memory locations 150 and 151 on page 01.
Thus, those two locations must be reserved
for data. One must ensure that those
specific memory locations are not inadver-
tantly used for some other purpose. In a
typical program, one may have many lo-
cations in memory assigned for holding or
manipulating data. It is important that one
maintain some sort of system of recording
where one plans to store blocks of data and

PG | LOC MACHINE CODE LABELS MNEMONICS COMMENTS
01 000 ADD, Add no’s@ 150 & 151
01 010

01 020

01 030

01 | 040

01 050

01 060

01 070

01 | 100

01 | 110

01 | 120

01 130

01 140

01 150 Number storage

i1 | 151 Number storage

01 152

01 153

01 154

01 155

01 156

01 157

01 160

01 170

01 200

PROGRAM DEVELOPMENT WORK SHEET

PG | LOC MACHINE CODE LABELS MNEMONICS COMMENTS
01 | 000 | 006 | 000 ADD, LAI 000 Set ACC = 000
01 | 002 | 056 | 001 LHI 001 Set pntr PG = 1

01 | 004 | 066 | 150 LLI 150 Set pntr LOC = 150
01 | 006 | 207 ADM Add 1'st no. to ACC
01 | 007 | 060 INL Adyv pntr to 2'nd no.
01 010 207 ADM Add 2'nd no. to 1’st
01 011 007 RET Exit subroutine

87

MEMORY USAGE MAP

where various operating routines will reside
as a program is developed. This can be readily
accomplished by setting up and using memory
usage maps (often commonly referred to as
core maps). An example of a memory usage
map being started for the subroutine just dis-
cussed is shown.

The same type of form may also be used as
a program development sheet as shown here .
One may observe that the form provides for
memory addresses, the actual octal values
of the machine codes, labels and mnemonics
used by the programmer, and additional in-
formation.

Memory usage maps are extremely valuable
for keeping large programs organized as they
are developed, or for displaying the locations
of a variety of different programs that one

might desire to have residing in memory at °

the same time. It is suggested that the person
intending to do even a moderate amount of
machine language programming make up a
supply of such forms (using a ditto or mimeo-
graph machine) to have on hand.

h

There are some important factors about
machine language programming that should
be pointed out as they have considerable im-
pact on the total efficiency and speed at
which one can develop such programs and get
them operating correctly. The factors relate
to one simple fact. People developing machine
language programs (especially beginners) are
very prone to making programming mistakes!
Regardless of how carefully one proceeds, it
always seems that any fair sized program
needs to be revised before a properly
operating program is achieved. The impact
that changes in a program have on the de-
velopment (or redevelopment) effort vary
according to where in the program such
changes must be made. The reason for the
seriousness of the problem is because program
changes generally result in the addresses of
the instructions in memory being altered.
Remember, if an instruction is added, or de-

MEMORY
PAGE LOC
01 000 006
01 001 000
01 002 056
01 003 001
01 004 066
01 005 150
01 006 207
01 007 060
01 010 207
01 011 066
*e.01 012 160
#& 0] 013 370

%01 014 007

CONTENTS MNEMONICS

leted, then all the remaining instructions in
the routine being altered must be moved to
different locations! This can have multiplying
effects if the instructions that are moved are
referred to by other routines (such as call and
jump commands) because then the addresses
referred to by those types of commands must
be altered too! To illustrate the situation, a
change will be made to the sample program
presented several pages ago. Suppose it was
decided that the subroutine should place the
result of the addition calculation in a word in
memory before exiting the subroutine,
instead of simply having the result in the ac-
cumulator. The original program, for
example, could have been residing in the
locations shown on the program development
work sheet on the previous page. Changing
the program would result in it occupying the
following memory locations:

COMMENTS

LAI 000 Place 000 in accumulator
LHI 001 Set Reg Hto 1

LLI 150 Set Reg L to 150

ADM Add contents of memory
INL Locations 150 & 151
ADM Add 2nd to 1st

LLI 160 Set Reg L to 160

LMA Save answer @ 160

RET End of subroutine

The ** locations denote the additional
memory locations required by the modified
subroutine. If the programmer had already
developed a routine that resided in locations
012, 013, or 014, the change would require
that it be moved!

If one was using a program development
work sheet, one would have had to erase the
original RET instruction at the end of the
routine and then written in the two new
commands, and added the RET instruction
at the end. The effects would not be too de-
vestating since the change was inserted at the
end of the subroutine. But, suppose a similar
change was necessary at the start of a sub-
routine that had 50 instructions in it? The
programmer would have to do a lot of
erasing!

The effects of changes in program source
listings was recognized early as a problem in
developing programs. Because of this' people
developed programs called EDITORS that
would enable the computer to assist people in
the task of creating and manipulating source
listings for programs. An EDITOR is a
program that will allow a person to use a com-
puter as a text buffer. Source listings may be
entered from a keyboard or other input
device and stored in the computer’s memory.
Information that is placed in the text buffer is
kept in an organized fashion, usually by lines
of text. An Editor program generally has a
variety of commands available to the operator
to allow the information stored in the text
buffer to be manipulated. For instance, lines
of information in the text buffer may be

added, deleted, moved about or inserted
before other lines, and so forth. Naturally, the
information in the buffer can be displayed to
the operator on an output device such as a
cathode ray tube (CRT) or electromechan-
ical printing mechanism. Using this type of
program, a programmer can rapidly create a
source listing and modify it as necessary.
When a permanent copy is desired, the
contents of the text buffer may be punched
on paper tape or written on a magnetic
tape cassette. It turns out that the copy
placed on paper tape or a cassette can often
be further processed by another program to
be discussed shortly which is termed an

ASSEMBLER program. However, an
important reason for making a copy of the
text buffer on paper tape or magnetic cassette
tape is because if it is ever necessary to make
changes to the source listing, then the old
listing can be quickly reloaded back into the
computer. Changes may then be rapidly made
using the Editor program, and a new clean
listing obtained in a fraction of the time that
might be required to erase and rewrite a large
number of lines using pencil and paper.

Relatively small programs can be developed
using manual methods. That is, by writing the
source listings with pencil and paper. But,
anyone that is planning on doing extensive
program development work should obtain an
Editor program in order to substantually
increase their overall program development
efficiency. Besides, an Editor program can be
put to a lot of good uses besides just making
up source listings! Such as enabling one to
edit correspondence or prepare written
documents that are nice and neat in a fraction
of the time required by conventional
methods.

Changes in source listings naturally result in
changes to the machine codes (which the
mnemonics simply symbolize). Even more
important, the addresses associated with
instructions often must be changed due to
additions or deletions of words of machine
code. For instance, in the example routine
being used in this section, memory address
PAGE 01 LOCATION 011 originally
contained the code for a RET (RETURN) in-
struction which is 007. When the subroutine
was changed by - adding several more
instructions (so the answer could be stored in
a memory location), the RET instruction was
shifted down to the address PAGE 01
LOCATION 014. The address where it
formerly resided was changed to hold the
code for the first part of the LLI 160
instruction which is 066. Had changes been
made earlier in the routine, then many more
memory locations would need to be assigned
different machine codes. However, the
changes caused by adding on to the sample
program previously discussed are not as far
reaching as the one presented on the follow-
ing page. There the changes result in the
addresses of subroutines referred to by other
routines being changed, so that it is then
necessary to go back and modify the machine
codes in all of the routines that refer to the
subroutine that was changed!

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS
00 000 026 OVER, LCI 100 Load reg C with 100
00 001 100
00 002 106 CAL NEWONE Call a new subroutine
00 003 013
00 004 000
00 005 106 CAL LOAD And then another
00 006 023
00 007 000
00 010 104 JMP OVER Jump back & repeat
00 011 000
00 012 000
00 013 056 NEWONE, LHI 000 Load reg H with zeroes
00 014 000
00 015 066 LLI 200 And L with 200
00 016 200
00 017 317 LBM Fetch mem contents to B
00 020 010 INB Increment the value in B
00 021 371 LMB Place B back into memory
00 022 007 RET End of subroutine

MEMORY

PAGE LOC CONTENTS MNEMONICS COMMENTS
00 023 056 LOAD, LHI003 Set H to PG 03
00 024 003 : _
00 025 361 LLB Place register B into L
00 026 370 LMA Place ACC into memory
00 027 021 Dec Decrement value in reg C
00 030 013 RFZ Return if C is not zero
00 031 - 000 HLT Halt when C = zero

Suppose it was decided to insert a single
word instruction right after the LCI 100 com-
mand in the above program. The new program
would appear as shown next.

MEMORY
PAGE LOC CONTENTS MNEMO
00 000 026 OVER,
00 001 100
00 002 250
* 00 003 106
* 00 004 ** 014
* 00 005 000
* 00 006 106
* 00 007 ** 024
* 00 010 000
* 00 011 104
* 00 012 000
* 00 013 000
* 00 014 056
* 00 015 000
* 00 016 066
* 00 017 200
* 00 020 317
* 00 021 010
* 00 022 371
* 00 023 007
* 00 024 056 LOAD,
* 00 025 003
* 00 026 361
=00 027 370
* 00 030 021
£ 00 031 013
* 00 032 000

NICS COMMENTS

LCI 100 Load reg C with 100
XRA Clear the accumulator
CAL NEWONE Call a new subroutine
CAL LOAD And then another
JMP OVER Jump back and repeat

NEWONE, LHI 000

Load Reg H with zeroes

LLI 200 And L with 200

LBM Fetch mem contents to B
INB Increment the value in B
LMB Place B back into memory
RET Exit subroutine

LHI 003 Set H to PAGE 03

LLB Place reg B into L

LMA Place ACC into memory
DCC Decrement value in reg C
RFZ Return if C is not zero
HLT Halt when C is zero

Note in the illustration how not only the
addresses of all the instructions beyond
location 002 (denoted by the *) change, but
even more important, that parts of the in-
structions themselves (the address portion
of the CAL instructions, denoted by the **)
must now be altered. The essential point
being made here is that if the starting address
of a routine or subroutine that is referred to
by any other part of the program is changed,
then each and every reference to that routine
must be located and the address portion
corrected! This can be an extremely formi-
dable, time consuming, tedious, and down
right frustrating task if all the references must
be found and corrected by manual means in a
large program!

Early computer technologists soon became
disgusted with making such program correc-
tions by hand methods after learning that it
was almost impossible to develop large pro-
grams without making a few errors. They
went to work on finding a method to ease the
task of making such corrections and came up
with a type of program called an ASSEM-
BLER that could utilize the computer it-
elf to perform such exacting tasks.
ASSEMBLER programs are types of programs
that are able to process source listings when
they have been written in mnemonic (sym-

bolic) form and translate them into the
OBJECT code (actual machine language code)
that is utilized directly by the computer. An
ASSEMBLER also keeps track of assigning
the proper addresses to references to rout-
ines and subroutines. This is accomplished
through a process initiated by the program-
mer assigning LABELS to routines in the
source listing. One may now see that the
combination of an Editor and an Assembler
program can greatly ease the task of de-
veloping machine language programs over
that of the purely manual method. The use

MNEMONIC

LHI 001
LLI 000

of such programs is almost mandatory when
programs become large because the manual
method becomes highly unwieldy. A primary
reason that an Editor and Assembler are so
useful is because if a mistake is made in the
program, one can use the relatively quick
method of utilizing the Editor program to
revise the source listing. Then, one may use
the Assembler program to reprocess the
corrected source listing and produce a new
version of the machine code assigned to new
addresses if appropriate.

For quite small programs, say less than
100 instructions, the use of Editor and
Assembler programs are not mandatory.
In fact, even if one uses these aids for small
programs, one should know how to manually
convert mnemonic listings to object code.
This is because it may occasionally be de-
sirable to make minor program changes
(patches) without having to go through
the process of using an Editor and Assem-
bler. This is particularly true when one
is DEBUGGING large programs and wants
to ascertain whether a minor correction will
correct a problem. The process of convert-
ing from a mnemonic listing to actual mach-
ine code is not difficult in concept. Many
readers will have discerned the process from
the examples already provided. However, for
any who are in doubt, the process will be
explained for the sake of clarity.

Suppose a person desired to produce a
small program that would set the contents
of all the words in PAGE 01 of memory to
000. The programmer would first develop
the algorithm and write it down as a mne-
monic (source) listing. Such an algorithm
might appear as follows.

COMMENTS

Set the high address register to PAGE 01.
Set the low address register to the first

location on the page assigned by reg. H.

AGAIN, LMIO000

Load the contents of the memory location

INL

JFZ AGAIN

HLT

specified by registers H & L to 000.
Advance register L to the next memory
location (but do not change the page).

If the value of register L is not 000

after it has been incremented then JUMP
back to the part of the program denoted by
the label AGAIN and repeat the process.

If the value of register L is 000, then have
the computer stop as the program is done!

==

To convert the source listing to machine
(object) code the programmer must first
decide where the program is to reside in
memory. In this particular case it would
certainly not be wise to place the program
anywhere on PAGE 01 as the program would
self-destruct! The program could safely be
placed anywhere else. For the sake of demon-
stration it will be assumed that it is to reside
on PAGE 02 starting at LOCATION 100. To
convert the source listing to machine code the
programmer would simply make a list of the
addresses to be occupied by the program.
Then the programmer would simply look up
the machine code corresponding to the
mnemonic for each instruction and place this
number next to the address in which it
will reside. (The machine code for each
mnemonic used by the ‘8008° CPU is
provided in Chapter ONE of this manual.)

Since some instructions are location
dependent in that they require the actual
address of referenced routines, it is often
necessary to assign the machine code in two
processes. The first process consist of
assigning the machine codes to specific
memory addresses wherever possible. When
the machine code requires an address that
has not yet been determined, the memory
location is left blank. The second process
consists of going back and filling in any blanks
once the addresses of referenced routines have
been determined. In the example being used
for illustration, only one process is required
because the address specified by the label
AGAIN is defined before the label (address) is
referenced by the JFZ instruction. The
sample program when converted to
machiné language code would appear as
shown next.

ORIGINAL MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LHI 001 02 100 056 Machine code for LHI mnemonic
02 101 001 Immediate part of LHI mnemonic
LLI 000 02 102 066 Machine code for LLI mnemonic
02 103 000 Immediate part of LLI mnemonic
AGAIN, LMI 000 02 104 076 Machine code for LMI mnemonic
Note that the label AGAIN now
defines an address of LOCATION
104 on PAGE 02
02 105 000 Immediate part of LMI mnemonic
INL 02 106 060 Increment low address here
JFZ AGAIN 02 107 110 Machine code for JFZ mnemonic
02 110 104 Low address portion of the CONDI-
TIONAL JUMP instruction as
defined by label AGAIN above
02 111 002 PAGE address portion of the
CONDITIONAL JUMP instruction
defined by label AGAIN
HLT 02 112 377 Alternately, the code 000 or 001

could have been used here as the
machine code for a HALT command

Once the program has been put in machine
language form the actual machine code may
be placed in the assigned locations in mem-
ory. The programmer may then proceed to
verify the algorithm’s validity. For small
programs such as the example just illustrated
the machine code can simply be loaded into
the correct memory locations using manual
methods typically provided on microcom-
puter systems. Such small programs can then
be easily checked out by stepping through
the program one instruction at a time.

If the program is relatively large then a
special loader program which is typically
provided with an ASSEMBLER program
could be used to load in the machine code.

Checking out and DEBUGGING large
programs can sometimes be difficult if a
few simple rules are not followed. A good
rule of thumb is to first test out each sub-
routine independently. One may choose to
STEP through a subroutine, or else to place
HALT instructions at the end of each sub-

routine. Then one may verify that data was
manipulated properly by a particular sub-
routine before going on to the next section
in a program. The use of strategically located
HALT instructions in a program initially
being tried out is an important technique
for the programmer to remember. When a
HALT is encountered the user may check the
contents of memory locations and examine
the contents of CPU registers to determine
if they contain the proper values at that
point in the program. (Using the manual
operator controls and indicator lamps typi-
cally- provided with microcomputer develop-
ment systems.) If all is well at a check point
then the programmer may replace the
HALT instruction with the actual in-
sruction for that point. One may then
continue checking the operation of
the program after making certain that
any registers that were altered by the
examination procedure (typically
registers H and L in an ‘8008 system)
have been reset to the desired values
if they will effect operation of the
program as it continues!

20

It is often helpful to use a utility pro-
gram known as a MEMORY DUMP pro-
gram to check the contents of memory
locations when testing a new program.
A memory dump program is a small utility
program that will allow the contents of
areas in memory to be displayed on an
output device. Naturally, the memory dump
program must reside in an area of memory
outside that being used by the program
being checked. By using this type of pro-
gram the operator may readily verify the
contents of memory locations before and
after specific operations occur to see if
their contents are as expected. A memory
dump program is also a valuable aid in
determining whether a program has been
properly loaded or that a portion of a
program is still intact after a program
under test has gone errant.

One will find that having flow charts
and memory maps at hand during the
DEBUGGING process is also very help-
ful. They serve as a refresher on where
routines are supposed to be in memory
and what the routines are supposed to
be doing.

If minor eorrections are necessary or
desired, then one may often make program
corrections, or PATCHES as they are com-
monly referred to by software people, to
see if the corrections believed appropriate
will work as planned. An easy way to make
a PATCH to a program is to replace a CALL
or JUMP instruction with a CALL to a new
subroutine that contains the desired cor-
rections (plus the original CALL or JUMP
instruction if necessary). If a CALL or
JUMP instruction is not available in the
vicinity of the area where a correction must
be made then one can replace three words
of instructions with a CALL patch provided
that one is very careful not to split up a
multi-word instruction. If this cannot be
avoided, then the remaining portion of
a split-up multi-word instruction must be
replaced with a NO-OPERATION instruc-
tion such as a LAA command (in an ‘8008’
system). One must also make certain that
the instructions displaced by the inserted
CALL instruction are placed in the patch-
ing subroutine (provided that they are not
being removed purposely). An example
of several patches being made to the small
example program previously discussed will
be illustrated next.

Suppose, in the example just presented,
that the operator decided not to clear (set
to 000) all the words in PAGE 01 of mem-
ory, but rather to only clear the locations
000 to 177 (octal) on the page. The pro-
gram could be modified by replacing the
JFZ AGAIN instruction which started at
LOCATION 107 on PAGE 02 with the
command CAL 000 003 (CALL the sub-
routine starting at LOCATION 000 on
PAGE 03 which will be the PATCH).
Now at LOCATION 000 on PAGE 03
one could put:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LAI 200 03 000 006
03 001 200
CPL 03 002 276
JFZ AGAIN 03 003 110
03 004 104
03 005 002
RET 03 006 007

COMMENTS

Put value 200 into the ACC
Note value of 200 used because
contents of register L has

been incremented
Compare contents of the ACC

with the contents of register L
If accumulator and L do not
match then continue with the
original program

End of PATCH subroutine

Suppose instead of filling every word on
PAGE 01 with zeroes the programmer de-
cided to fill every other other word? A patch
could be made by replacing the LMI 000

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LMI 000 03 000 076
03 001 000
INL 03 002 060
INL 03 003 060
RET 03 004 007

command at LOCATION 106 on PAGE 02
and again inserting a CAL 000 003 command
to a patch subroutine that might appear as
illustrated below.

COMMENTS

Keep the LMI instruction

as part of the PATCH

Keep original increment L
And add another increment
L to skip every other word
Exit from PATCH subroutine

Finally, to illustrate a patch that splits a
multiword command, consider a hypo-
thetical case where the programmer decided
that prior to doing the clearing routine, it
would be important to save the contents
of register H before setting it to PAGE 01.
If a three word CALL command is placed
starting at LOCATION 100 on PAGE 02 in
the original routine to serve as a PATCH, it
may be observed that the second half of the
LLI 000 instruction would cause a problem
when the program returned from the patch.

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LEH 03 000 345
LHI 001 03 001 056
03 002 001
LLI 000 03 003 066
03 004 000
RET 03 005 007

(The value of 000 at LOCATION 103 on
PAGE 02 in the example program would be
interpreted as a HLT command by the com-
puter when it returned from the patch sub-
routine.) In order to avoid this problem the
programmer could place a LAA (effectively a
NO-OPERATION command) at LOCATION
103 on PAGE 02 after placing the patch
command CAL 000 003 instruction beginning
at LOCATION 100 on PAGE 02. The actual
patch subroutine might appear as shown
below.

COMMENTS

Save register H in register E
Now set register H to point
to PAGE 01

And set the low address
pointer to LOCATION 000
End of PATCH subroutine

In the balance of this manual numerous
techniques for developing machine language
programs will be presented and discussed.
Many of the examples used will be presented
as subroutines that the reader may use when
developing customized programs. It is im-
portant for the new programmer to learn
to think of programs in terms of routines
or subroutines and then learn to combine
aubroutines into larger programs. This prac-
tice makes it easier for the programmer to
initially develop programs. It is generally
much easier to create small algorithms and
then combine them, in the form of sub-
routines, into larger programs. Remember,
subroutines are sequences of instructions
that can be CALLED by other parts of a
program. They are terminated by RETURN
or CONDITIONAL RETURN commands.
It is also wise when developing programs to
leave some room in memory between sub-
routines so that patches can be inserted
or routines lengthened without having to
rearrange the contents of a large amount of
memory. Finally, while speaking of sub-
routines, it will be pointed out that the
user would be wise~to keep a note book
of subroutines that the individual develops
in order to build up a reference library
of pertinent routines. It takes time to think
up and check out algorithms. It is very easy
to forget just how one had solved a par-
ticular problem six months after one init-
ially accomplished the task. Save your
accrued efforts. The more routines you
have to utilize, the more wvaluable your
machine becomes. The power of the machine
is all determined by WHAT YOU PUT IN ITS
MEMORY'!

1. First, the programmer should clearly define and write down on paper exactly
what the program is to accomplish.

2. Next, flow charts to aid in the complex task of writing the mnemonic (source)
listings are prepared. They should be as detailed as necessary for the program-
mer’s level of experience and ability.

3. Memory maps should be used to distribute and keep track of program storage
-areas and data manipulating regions in available memory.

4. Using the flow charts and memory maps as guides, the actual source listings of
the algorithms are written using the symbolic representations of the instructions.
An Editor program is frequently used to good advantage at this point.

5. The mnemonic source listings are converted into the actual machine language
numerical codes assigned to specific addresses in memory. An Assembler pro-
gram makes this task quite easy and should be used for large programs.

6. The prepared machine code is loaded into the appropriate addresses in the
computer’s memory and operation of the program is verified. Often the initial
check out is done using the STEP mode of operation, or by exercising indivi-
dual subroutines. The judicial use of inserted HALT instructions at key loca-
tions will often be of value during the initial testing phase.

7. If the program is not performing as intended then problem areas must be iso-
lated. Program PATCHES may be utilized to make minor corrections. If serious
problems are found it may be necessary to return to step no. 3, or step no. 1! B

21

